Adjuvant Activity and Toxicological Risks of Lipid Nanoparticles Contained in the COVID‑19 “mRNA Vaccines”

Authors

  • Gabriele Segalla Multichem R&D

DOI:

https://doi.org/10.56098/z1ydjm29

Keywords:

COVID-19 mRNA vaccine, LNP, nanotechnology, ROS, adjuvant, novel adjuvant, lipid nanoparticle

Abstract

The LNPs reportedly used as the platform by Pfizer/BioNTech for its SARS-CoV-2 “mRNA vaccines” allegedly consist of a mixture of phospholipids, cholesterol, PEGylated lipids, and an ionizable cationic lipid. This study reviews some of the main toxicological risks and immunostimulatory properties of such nanomaterials, with particular attention to the ionizable LNPs and their adjuvant properties, inflammatory responses, stimulation of immune cells, and formation of ROS inside transfected cells. The decision not to carry out safety pharmacology, carcinogenicity, and genotoxicity tests on these nanomaterials appears unjustifiable and in contradiction with the international policies provided for novel adjuvants. Important gaps are highlighted on the activities by the relevant regulatory bodies, related to the scientific evaluation, risk management, and pharmacovigilance for new medicinal products in the EU. Given the findings discussed here, it is strongly urged that the mRNA-LNP-based “vaccines” and their boosters should be removed from the worldwide market because of unacceptable and potentially fatal safety risks.

Author Biography

  • Gabriele Segalla, Multichem R&D

    Pure Chemistry (Organic Biological Chemistry), specialist in chemistry of micro-emulsions and colloidal systems, CEO & Chief Scientist of Multichem R&D Italy, email: gabriele.segalla@gmail.com

References

Alameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Ndeupen, S., Sittplangkoon, C., Wilmore, J.R., Gaudette, B.T., Soliman, O.Y., Pine, M., Hicks, P., Manzoni, T.B., Knox, J.J., Johnson, J.L., Laczkó, D., Muramatsu, H., Davis, B., Meng, W., Rosenfeld, A.M., Strohmeier, S., Lin, P., J.C., Mui, L.B., Tam, Y.K., Karikó, K., Jacquet, A., Krammer, F., Bates, P., Cancro, M.P., Weissman, D., Prak, E.T.L., Allman, D., Igyártó, B.Z., Locci, M., Pardi, N. (2021). Immunity 54(12), 2877–2892 ©2021 Elsevier Inc. https://doi.org/10.1016/j.immuni.2021.11.001

Banoun, H. (2022). Current state of knowledge on the excretion of mRNA and spike produced by anti-COVID-19 mRNA vaccines; possibility of contamination of the entourage of those vaccinated by these products. Infectious Diseases Research, 2022;3(4):22. https://doi.org/10.53388/IDR20221125022

Barone, F., De Angelis, I., Andreoli, C., Battistelli, C.L., Arcangeli, C., & Leter, G. (2017). Metodi in vitro e in silico per la valutazione del potenziale tossicologico dei nanomateriali [In vitro and in silico methods for evaluating the toxicological potential of nanomaterials]. ENEA − Focus 3/2017 Energia, ambiente e innovazione. DOI 10.12910/EAI2017-045

Bourcier, T., McGovern, T., Stavitskaya, L., Kruhlak, N., and Jacobson-Kram, D. (2015). Improving prediction of carcinogenicity to reduce, refine, and replace the use of experimental animals. J. Am. Assoc. Lab. Anim. Sci. 54, 163–169. https://pubmed.ncbi.nlm.nih.gov/25836962/

Chompoosor A., Saha K., Ghosh P.S., Macarthy D.J., Miranda O.R., Zhu Z.J., Arcaro K.F., & Rotello V.M. (2010).The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small, 6(20):2246-9. https://doi.org/10.1002/smll.201000463

Cimino, M. C. (2006). Comparative overview of current international strategies and guidelines for genetic toxicology testing for regulatory purposes. Environ. Mol. Mutagen. 47, 362–390. doi: 10.1002/em.20216

Demple, B., Harrison, L. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 63:915-48. https://doi.org/10.1146/annurev.bi.63.070194.004411

Dertinger, S. D., Totsuka, Y., Bielas, J. H., Doherty, A. T., Kleinjans, J., Honma, M., et al. (2019). High information content assays for genetic toxicology testing: A report of the International Workshops on Genotoxicity Testing (IWGT). Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2019.02.003

Di Bucchianico, S., Fabbrizi, M.R., Cirillo, S., Uboldi, C., Gilliland, D., Valsami-Jones, E., & Migliore, L. (2014). Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine, 9(1):2191-2204. https://doi.org/10.2147/IJN.S58397

Dufour, E.K., Kumaravel, T., Nohynek, G.J., Kirkland, D., & Toutain, H. (2006). Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutation Research, 607(2):215-224. https://doi.org/10.1016/j.mrgentox.2006.04.015

Hayashi, M., Honma, M., Takahashi, M., Horibe, A., Tanaka, J., Tsuchiya, M., et al. (2013). Identification and evaluation of potentially genotoxic agricultural and food-related chemicals. Food Safety 1, 2013003–2013003. https://doi.org/10.14252/foodsafetyfscj.2013003

Imlay, J.A., Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240(4857):1302-9. https://www.science.org/doi/10.1126/science.3287616

Jena, N.R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. J Biosci. 37(3):503-17. https://doi.org/10.1007/s12038-012-9218-2

Levine, A.S., Sun, L., Tan, R., Gao, Y., Yang, L., Chen, H., Teng, Y., & Lan, L. (2017). The oxidative DNA damage response: A review of research undertaken with Tsinghua and Xiangya students at the University of Pittsburgh. Sci. China Life Sci. 60, 1077–1080 https://doi.org/10.1007/s11427-017-9184-6

Liou, G.Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radic Res. 44(5):479-96. https://doi.org/10.3109/10715761003667554

Kang, S.J., Kim B.M., Lee Y.J., & Chung H.W. (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen, 49(5):399-405. https://doi.org/10.1002/em.20399

Kanuri SH, Sirrkay PJ. (2024). Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Therapeutic Advances in Vaccines and Immunotherapy, 2024;12. https://doi.org/10.1177/25151355241228439

Kirkland, D., Aardema, M., Henderson, L., and Müller, L. (2005). Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. Sensitivity, specificity and relative predictivity. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 584, 1–256. https://doi.org/10.1016/j.mrgentox.2005.02.004

Kirsch-Volders, M., Vanhauwaert,A., De Boeck,M., & Decordier,I. (2002). Importance of detecting numerical versus structural chromosome aberrations. Mutat Res. 504(1-2):137-48. https://doi.org/10.1016/S0027-5107(02)00087-8

MacGregor, J. T., Frötschl, R., White, P. A., Crump, K. S., Eastmond, D.A., Fukushima, S., et al. (2015). IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 783, 66–78. https://doi.org/10.1016/j.mrgentox.2014.10.008

Maki, H., Sekiguchi, M. (1992). MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273–275. https://doi.org/10.1038/355273a0

Martella, G., Motwani, N.H., Khan, Z., Sousa, P. F. M., Gorokhova, E., Motwani, H.V. (2023) Chemical Research in Toxicology 36(9), 1471-1482 https://doi.org/10.1021/acs.chemrestox.3c00041

Mateuca R., Lombaert N., Aka P.V., Decordier I., & Kirsch-Volders M. (2006). Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 88(11):1515-31. https://doi.org/10.1016/j.biochi.2006.07.004

Nance, K. D., & Meier, J. L. (2021). Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Central Science, 7(5), 748–756. https://doi.org/10.1021/acscentsci.1c00197

Ndeupen, S., Qin, Z., Jacobsen, S., Bouteau, A., Estanbouli, H., and Igyàrtò , B.Z. (2021). The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Science 24, 103479. https://doi.org/10.1016/j.isci.2021.103479

Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science. 311(5761):622-7. https://www.science.org/doi/10.1126/science.1114397

Packer, M., Gyawali, D., Yerabolu, R. et al. (2021). A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun 12, 6777. https://doi.org/10.1038/s41467-021-26926-0

Petkov, P. I., Patlewicz, G., Schultz, T. W., Honma, M., Todorov, M., Kotov, S., et al. (2015). A feasibility study: can information collected to classify for mutagenicity be informative in predicting carcinogenicity? Regul. Toxicol. Pharmacol. 72, 17–25. https://doi.org/10.1016/j.yrtph.2015.03.003

Poirier, M. C. (2004). Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer 4, 630–637. https://doi.org/10.1038/nrc1410

Proquin, H., Rodríguez-Ibarra, C., Moonen, C.G., Urrutia Ortega, I.M., Briedé, J.J., de Kok, T.M., van Loveren, H., & Chirino,Y.I. (2017). Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis, 32(1):139-149. https://doi.org/10.1093/mutage/gew051

Rusyn, I., Asakura, S., Pachkowski, B., Bradford ,B.U., Denissenko, M.F., Peters. J.M., Holland, S.M., Reddy, J.K., Cunningham, M.L., & Swenberg, J.A. (2004). Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 64(3):1050–1057. https://doi.org/10.1158/0008-5472.CAN-03-3027

Sahin, U., Muik, A., Derhovanessian, E. et al. (2020). COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599. https://doi.org/10.1038/s41586-020-2814-7

Santiago, D. (2022a). A partial answer to the question posed by David A. Hughes, PhD, in the article: “What is in the so-called COVID-19 ‘vaccines’? Part 1: evidence of a global crime against humanity.” International Journal of Vaccine Theory, Practice, and Research, 2(2), 587–594. https://doi.org/10.56098/ijvtpr.v2i2.56

Santiago, D. (2022b). Playing Russian Roulette with every COVID-19 injection: The deadly global game. International Journal of Vaccine Theory, Practice, and Research, 2(2), 619–650. https://doi.org/10.56098/ijvtpr.v2i2.36

Santiago, D., & Oller, J. W. (2023). Abnormal clots and all-cause mortality during the pandemic experiment: Five doses of COVID-19 vaccine are evidently lethal to nearly all medicare participants. International Journal of Vaccine Theory, Practice, and Research, 3(1), 847–890. https://doi.org/10.56098/ijvtpr.v3i1.73

Segalla, G. (2023a). Chemical-physical criticality and toxicological potential of lipid nanomaterials contained in a COVID- 19 mRNA vaccine. International Journal of Vaccine Theory, Practice, and Research, 3(1), 787–817. https://doi.org/10.56098/ijvtpr.v3i1.68

Segalla, G. (2023b). Apparent Cytotoxicity and Intrinsic Cytotoxicity of Lipid Nanomaterials Contained in a COVID-19 mRNA Vaccine. (2023). International Journal of Vaccine Theory, Practice, and Research, 3(1), 957-972. https://doi.org/10.56098/ijvtpr.v3i1.84

Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., Wright, C.J., & Doak, S.H.(2009, August). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30 (23- 24):3891-914. https://doi.org/10.1016/j.biomaterials.2009.04.009

Swaminathan, G., Thoryk, E.A., Cox, K.S., Meschino, S., Dubey, S.A., Vora, K.A., Celano, R., Gindy, M., Casimiro, D.R., and Bett, A.J. (2016a). A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 34, 110–119. https://doi.org/10.1016/j.vaccine.2015.10.132

Swaminathan, G., Thoryk, E.A., Cox, K.S., Smith, J.S., Wolf, J.J., Gindy, M.E., Casimiro, D.R., and Bett, A.J. (2016b). A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates. Sci. Rep. 6, 34215. https://doi.org/10.1038/srep34215

Tahtinen, S., Tong, AJ., Himmels, P. et al. (2022) IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol 23, 532–542. https://doi.org/10.1038/s41590-022-01160-y

Takeshita. T., and Kanaly, R.A. (2019). In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[a]pyrene in the Hep G2 Cell Line. Front. Chem. 7:491. https://doi.org/10.3389/fchem.2019.00491

Tizard, I. R. (2020). Vaccines for Veterinarians. Chapter 7, Adjuvants and adjuvanticity, 75-86, ISBN 978-0-323-68299-2, Elsevier, https://doi.org/10.1016/C2018-0-01755-7

Tretyakova, N.Y., Groehler, A. 4th, & Ji, S. (2015). DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes. Acc. Chem. Res. 48(6), 1631-1644. https://doi.org/10.1021/acs.accounts.5b00056

Thybaud, V., Lorge, E., Levy, D. D., van Benthem, J., Douglas, G. R., Marchetti, F., et al. (2017). Main issues addressed in the 2014–2015 revisions to the OECD genetic toxicology test guidelines. Environ. Mol. Mutagen. 58, 284–295. https://doi.org/10.1002/em.22079

Verbeke, R., Hogan, M. J., Lore, K., Pardi, N. (2022). Innate immune mechanisms of mRNA vaccines. Cell Press, Review. Immunity 55, 1993-2005. https://doi.org/10.1016/j.immuni.2022.10.014

Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q. (2020). Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field – Nanoscale. Res Lett 15, 115 https://doi.org/10.1186/s11671-020-03344-7

Zaman, M., Good, M.F., Toth, I. (2013). Nanovaccines and their mode of action. Methods, 60(3), 226-231. https://doi.org/10.1016/j.ymeth.2013.04.014

Downloads

Published

2024-03-02

How to Cite

Adjuvant Activity and Toxicological Risks of Lipid Nanoparticles Contained in the COVID‑19 “mRNA Vaccines”. (2024). International Journal of Vaccine Theory, Practice, and Research , 3(2), 1085-1102. https://doi.org/10.56098/z1ydjm29

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.