Adjuvant Activity and Toxicological Risks of Lipid Nanoparticles Contained in the COVID‑19 “mRNA Vaccines”
DOI:
https://doi.org/10.56098/z1ydjm29Keywords:
COVID-19 mRNA vaccine, LNP, nanotechnology, ROS, adjuvant, novel adjuvant, lipid nanoparticleAbstract
The LNPs reportedly used as the platform by Pfizer/BioNTech for its SARS-CoV-2 “mRNA vaccines” allegedly consist of a mixture of phospholipids, cholesterol, PEGylated lipids, and an ionizable cationic lipid. This study reviews some of the main toxicological risks and immunostimulatory properties of such nanomaterials, with particular attention to the ionizable LNPs and their adjuvant properties, inflammatory responses, stimulation of immune cells, and formation of ROS inside transfected cells. The decision not to carry out safety pharmacology, carcinogenicity, and genotoxicity tests on these nanomaterials appears unjustifiable and in contradiction with the international policies provided for novel adjuvants. Important gaps are highlighted on the activities by the relevant regulatory bodies, related to the scientific evaluation, risk management, and pharmacovigilance for new medicinal products in the EU. Given the findings discussed here, it is strongly urged that the mRNA-LNP-based “vaccines” and their boosters should be removed from the worldwide market because of unacceptable and potentially fatal safety risks.
References
Alameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Ndeupen, S., Sittplangkoon, C., Wilmore, J.R., Gaudette, B.T., Soliman, O.Y., Pine, M., Hicks, P., Manzoni, T.B., Knox, J.J., Johnson, J.L., Laczkó, D., Muramatsu, H., Davis, B., Meng, W., Rosenfeld, A.M., Strohmeier, S., Lin, P., J.C., Mui, L.B., Tam, Y.K., Karikó, K., Jacquet, A., Krammer, F., Bates, P., Cancro, M.P., Weissman, D., Prak, E.T.L., Allman, D., Igyártó, B.Z., Locci, M., Pardi, N. (2021). Immunity 54(12), 2877–2892 ©2021 Elsevier Inc. https://doi.org/10.1016/j.immuni.2021.11.001
Banoun, H. (2022). Current state of knowledge on the excretion of mRNA and spike produced by anti-COVID-19 mRNA vaccines; possibility of contamination of the entourage of those vaccinated by these products. Infectious Diseases Research, 2022;3(4):22. https://doi.org/10.53388/IDR20221125022
Barone, F., De Angelis, I., Andreoli, C., Battistelli, C.L., Arcangeli, C., & Leter, G. (2017). Metodi in vitro e in silico per la valutazione del potenziale tossicologico dei nanomateriali [In vitro and in silico methods for evaluating the toxicological potential of nanomaterials]. ENEA − Focus 3/2017 Energia, ambiente e innovazione. DOI 10.12910/EAI2017-045
Bourcier, T., McGovern, T., Stavitskaya, L., Kruhlak, N., and Jacobson-Kram, D. (2015). Improving prediction of carcinogenicity to reduce, refine, and replace the use of experimental animals. J. Am. Assoc. Lab. Anim. Sci. 54, 163–169. https://pubmed.ncbi.nlm.nih.gov/25836962/
Chompoosor A., Saha K., Ghosh P.S., Macarthy D.J., Miranda O.R., Zhu Z.J., Arcaro K.F., & Rotello V.M. (2010).The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small, 6(20):2246-9. https://doi.org/10.1002/smll.201000463
Cimino, M. C. (2006). Comparative overview of current international strategies and guidelines for genetic toxicology testing for regulatory purposes. Environ. Mol. Mutagen. 47, 362–390. doi: 10.1002/em.20216
Demple, B., Harrison, L. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 63:915-48. https://doi.org/10.1146/annurev.bi.63.070194.004411
Dertinger, S. D., Totsuka, Y., Bielas, J. H., Doherty, A. T., Kleinjans, J., Honma, M., et al. (2019). High information content assays for genetic toxicology testing: A report of the International Workshops on Genotoxicity Testing (IWGT). Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2019.02.003
Di Bucchianico, S., Fabbrizi, M.R., Cirillo, S., Uboldi, C., Gilliland, D., Valsami-Jones, E., & Migliore, L. (2014). Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine, 9(1):2191-2204. https://doi.org/10.2147/IJN.S58397
Dufour, E.K., Kumaravel, T., Nohynek, G.J., Kirkland, D., & Toutain, H. (2006). Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutation Research, 607(2):215-224. https://doi.org/10.1016/j.mrgentox.2006.04.015
Hayashi, M., Honma, M., Takahashi, M., Horibe, A., Tanaka, J., Tsuchiya, M., et al. (2013). Identification and evaluation of potentially genotoxic agricultural and food-related chemicals. Food Safety 1, 2013003–2013003. https://doi.org/10.14252/foodsafetyfscj.2013003
Imlay, J.A., Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240(4857):1302-9. https://www.science.org/doi/10.1126/science.3287616
Jena, N.R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. J Biosci. 37(3):503-17. https://doi.org/10.1007/s12038-012-9218-2
Levine, A.S., Sun, L., Tan, R., Gao, Y., Yang, L., Chen, H., Teng, Y., & Lan, L. (2017). The oxidative DNA damage response: A review of research undertaken with Tsinghua and Xiangya students at the University of Pittsburgh. Sci. China Life Sci. 60, 1077–1080 https://doi.org/10.1007/s11427-017-9184-6
Liou, G.Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radic Res. 44(5):479-96. https://doi.org/10.3109/10715761003667554
Kang, S.J., Kim B.M., Lee Y.J., & Chung H.W. (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen, 49(5):399-405. https://doi.org/10.1002/em.20399
Kanuri SH, Sirrkay PJ. (2024). Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Therapeutic Advances in Vaccines and Immunotherapy, 2024;12. https://doi.org/10.1177/25151355241228439
Kirkland, D., Aardema, M., Henderson, L., and Müller, L. (2005). Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. Sensitivity, specificity and relative predictivity. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 584, 1–256. https://doi.org/10.1016/j.mrgentox.2005.02.004
Kirsch-Volders, M., Vanhauwaert,A., De Boeck,M., & Decordier,I. (2002). Importance of detecting numerical versus structural chromosome aberrations. Mutat Res. 504(1-2):137-48. https://doi.org/10.1016/S0027-5107(02)00087-8
MacGregor, J. T., Frötschl, R., White, P. A., Crump, K. S., Eastmond, D.A., Fukushima, S., et al. (2015). IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 783, 66–78. https://doi.org/10.1016/j.mrgentox.2014.10.008
Maki, H., Sekiguchi, M. (1992). MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273–275. https://doi.org/10.1038/355273a0
Martella, G., Motwani, N.H., Khan, Z., Sousa, P. F. M., Gorokhova, E., Motwani, H.V. (2023) Chemical Research in Toxicology 36(9), 1471-1482 https://doi.org/10.1021/acs.chemrestox.3c00041
Mateuca R., Lombaert N., Aka P.V., Decordier I., & Kirsch-Volders M. (2006). Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 88(11):1515-31. https://doi.org/10.1016/j.biochi.2006.07.004
Nance, K. D., & Meier, J. L. (2021). Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Central Science, 7(5), 748–756. https://doi.org/10.1021/acscentsci.1c00197
Ndeupen, S., Qin, Z., Jacobsen, S., Bouteau, A., Estanbouli, H., and Igyàrtò , B.Z. (2021). The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Science 24, 103479. https://doi.org/10.1016/j.isci.2021.103479
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science. 311(5761):622-7. https://www.science.org/doi/10.1126/science.1114397
Packer, M., Gyawali, D., Yerabolu, R. et al. (2021). A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun 12, 6777. https://doi.org/10.1038/s41467-021-26926-0
Petkov, P. I., Patlewicz, G., Schultz, T. W., Honma, M., Todorov, M., Kotov, S., et al. (2015). A feasibility study: can information collected to classify for mutagenicity be informative in predicting carcinogenicity? Regul. Toxicol. Pharmacol. 72, 17–25. https://doi.org/10.1016/j.yrtph.2015.03.003
Poirier, M. C. (2004). Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer 4, 630–637. https://doi.org/10.1038/nrc1410
Proquin, H., Rodríguez-Ibarra, C., Moonen, C.G., Urrutia Ortega, I.M., Briedé, J.J., de Kok, T.M., van Loveren, H., & Chirino,Y.I. (2017). Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis, 32(1):139-149. https://doi.org/10.1093/mutage/gew051
Rusyn, I., Asakura, S., Pachkowski, B., Bradford ,B.U., Denissenko, M.F., Peters. J.M., Holland, S.M., Reddy, J.K., Cunningham, M.L., & Swenberg, J.A. (2004). Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 64(3):1050–1057. https://doi.org/10.1158/0008-5472.CAN-03-3027
Sahin, U., Muik, A., Derhovanessian, E. et al. (2020). COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599. https://doi.org/10.1038/s41586-020-2814-7
Santiago, D. (2022a). A partial answer to the question posed by David A. Hughes, PhD, in the article: “What is in the so-called COVID-19 ‘vaccines’? Part 1: evidence of a global crime against humanity.” International Journal of Vaccine Theory, Practice, and Research, 2(2), 587–594. https://doi.org/10.56098/ijvtpr.v2i2.56
Santiago, D. (2022b). Playing Russian Roulette with every COVID-19 injection: The deadly global game. International Journal of Vaccine Theory, Practice, and Research, 2(2), 619–650. https://doi.org/10.56098/ijvtpr.v2i2.36
Santiago, D., & Oller, J. W. (2023). Abnormal clots and all-cause mortality during the pandemic experiment: Five doses of COVID-19 vaccine are evidently lethal to nearly all medicare participants. International Journal of Vaccine Theory, Practice, and Research, 3(1), 847–890. https://doi.org/10.56098/ijvtpr.v3i1.73
Segalla, G. (2023a). Chemical-physical criticality and toxicological potential of lipid nanomaterials contained in a COVID- 19 mRNA vaccine. International Journal of Vaccine Theory, Practice, and Research, 3(1), 787–817. https://doi.org/10.56098/ijvtpr.v3i1.68
Segalla, G. (2023b). Apparent Cytotoxicity and Intrinsic Cytotoxicity of Lipid Nanomaterials Contained in a COVID-19 mRNA Vaccine. (2023). International Journal of Vaccine Theory, Practice, and Research, 3(1), 957-972. https://doi.org/10.56098/ijvtpr.v3i1.84
Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., Wright, C.J., & Doak, S.H.(2009, August). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30 (23- 24):3891-914. https://doi.org/10.1016/j.biomaterials.2009.04.009
Swaminathan, G., Thoryk, E.A., Cox, K.S., Meschino, S., Dubey, S.A., Vora, K.A., Celano, R., Gindy, M., Casimiro, D.R., and Bett, A.J. (2016a). A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 34, 110–119. https://doi.org/10.1016/j.vaccine.2015.10.132
Swaminathan, G., Thoryk, E.A., Cox, K.S., Smith, J.S., Wolf, J.J., Gindy, M.E., Casimiro, D.R., and Bett, A.J. (2016b). A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates. Sci. Rep. 6, 34215. https://doi.org/10.1038/srep34215
Tahtinen, S., Tong, AJ., Himmels, P. et al. (2022) IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol 23, 532–542. https://doi.org/10.1038/s41590-022-01160-y
Takeshita. T., and Kanaly, R.A. (2019). In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[a]pyrene in the Hep G2 Cell Line. Front. Chem. 7:491. https://doi.org/10.3389/fchem.2019.00491
Tizard, I. R. (2020). Vaccines for Veterinarians. Chapter 7, Adjuvants and adjuvanticity, 75-86, ISBN 978-0-323-68299-2, Elsevier, https://doi.org/10.1016/C2018-0-01755-7
Tretyakova, N.Y., Groehler, A. 4th, & Ji, S. (2015). DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes. Acc. Chem. Res. 48(6), 1631-1644. https://doi.org/10.1021/acs.accounts.5b00056
Thybaud, V., Lorge, E., Levy, D. D., van Benthem, J., Douglas, G. R., Marchetti, F., et al. (2017). Main issues addressed in the 2014–2015 revisions to the OECD genetic toxicology test guidelines. Environ. Mol. Mutagen. 58, 284–295. https://doi.org/10.1002/em.22079
Verbeke, R., Hogan, M. J., Lore, K., Pardi, N. (2022). Innate immune mechanisms of mRNA vaccines. Cell Press, Review. Immunity 55, 1993-2005. https://doi.org/10.1016/j.immuni.2022.10.014
Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q. (2020). Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field – Nanoscale. Res Lett 15, 115 https://doi.org/10.1186/s11671-020-03344-7
Zaman, M., Good, M.F., Toth, I. (2013). Nanovaccines and their mode of action. Methods, 60(3), 226-231. https://doi.org/10.1016/j.ymeth.2013.04.014
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gabriele Segalla
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The copyright for materials in this journal, IJVTPR, is owned by the author. The author, however, grants first right of publication to the journal, IJVTPR and assures the editorial staff of the journal that the work submitted has not simultaneously been submitted to any other journal, nor is it under consideration for publication by any other journal. If any portion of the work submitted has appeared elsewhere, the quoted material is properly cited and credit is given to the original publisher. The submitting author (or the principal and corresponding author of the work) also assures the editors of IJVTPR that he or she has obtained all required written permissions from any quoted authors or publishers of quoted materials. The submitting author also agrees to hold IJVTPR and its editorial staff harmless from any infractions of copyright law that may be discovered at any time in the future in the submitted work. The author assures the editorial staff at IJVTPR that none of the work submitted is plagiarized, and that any recycled or precycled material by the author is identified as such with proper credits in the text to any other parties holding a copyright interest in the quoted material.